Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37790523

RESUMEN

We characterized virus-neutralization and spike-binding antibody profiles in myeloma patients following monovalent or bivalent-SARS-CoV-2 booster vaccination. Vaccination improves the breadth of binding antibodies but not neutralization activity against current variants. Hybrid immunity and immune imprinting impact vaccine-elicited immunity.

2.
iScience ; 26(10): 107967, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37822504

RESUMEN

As SARS-CoV-2 becomes endemic, it is critical to understand immunity following early-life infection. We evaluated humoral responses to SARS-CoV-2 in 23 infants/young children. Antibody responses to SARS-CoV-2 spike antigens peaked approximately 30 days after infection and were maintained up to 500 days with little apparent decay. While the magnitude of humoral responses was similar to an adult cohort recovered from mild/moderate COVID-19, both binding and neutralization titers to WT SARS-CoV-2 were more durable in infants/young children, with spike and RBD IgG antibody half-life nearly 4X as long as in adults. IgG subtype analysis revealed that while IgG1 formed the majority of the response in both groups, IgG3 was more common in adults and IgG2 in infants/young children. These findings raise important questions regarding differential regulation of humoral immunity in infants/young children and adults and could have broad implications for the timing of vaccination and booster strategies in this age group.

3.
bioRxiv ; 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37662390

RESUMEN

We characterized virus-neutralization and spike-binding antibody profiles in myeloma patients following monovalent or bivalent-SARS-CoV-2 booster vaccination. Vaccination improves the breadth of binding antibodies but not neutralization activity against current variants. Hybrid immunity and immune imprinting impact vaccine-elicited immunity.

4.
medRxiv ; 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37090559

RESUMEN

Since the emergence of SARS-CoV-2, research has shown that adult patients mount broad and durable immune responses to infection. However, response to infection remains poorly studied in infants/young children. In this study, we evaluated humoral responses to SARS-CoV-2 in 23 infants/young children before and after infection. We found that antibody responses to SARS-CoV-2 spike antigens peaked approximately 30 days after infection and were maintained up to 500 days with little apparent decay. While the magnitude of humoral responses was similar to an adult cohort recovered from mild/moderate COVID-19, both binding and neutralization titers to WT SARS-CoV-2 were more durable in infants/young children, with Spike and RBD IgG antibody half-life nearly 4X as long as in adults. The functional breadth of adult and infant/young children SARS-CoV-2 responses were comparable, with similar reactivity against panel of recent and previously circulating viral variants. Notably, IgG subtype analysis revealed that while IgG1 formed the majority of both adults' and infants/young children's response, IgG3 was more common in adults and IgG2 in infants/young children. These findings raise important questions regarding differential regulation of humoral immunity in infants/young children and adults and could have broad implications for the timing of vaccination and booster strategies in this age group.

5.
Blood Cancer Discov ; 4(2): 106-117, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36511813

RESUMEN

Patients with multiple myeloma (MM) mount suboptimal neutralizing antibodies (nAb) following 2 doses of SARS-CoV-2 mRNA vaccines. Currently, circulating SARS-CoV-2 variants of concern (VOC) carry the risk of breakthrough infections. We evaluated immune recognition of current VOC including BA.1, BA.2, and BA.5 in 331 racially representative patients with MM following 2 or 3 doses of mRNA vaccines. The third dose increased nAbs against WA1 in 82%, but against BA variants in only 33% to 44% of patients. Vaccine-induced nAbs correlated with receptor-binding domain (RBD)-specific class-switched memory B cells. Vaccine-induced spike-specific T cells were detected in patients without seroconversion and cross-recognized variant-specific peptides but were predominantly CD4+ T cells. Detailed clinical/immunophenotypic analysis identified features correlating with nAb/B/T-cell responses. Patients who developed breakthrough infections following 3 vaccine doses had lower live-virus nAbs, including against VOC. Patients with MM remain susceptible to SARS-CoV-2 variants following 3 vaccine doses and should be prioritized for emerging approaches to elicit variant-nAb and CD8+ T cells. SIGNIFICANCE: Three doses of SARS-CoV-2 mRNA vaccines fail to yield detectable VOC nAbs in nearly 60% and spike-specific CD8+ T cells in >80% of myeloma patients. Patients who develop breakthrough infections following vaccination have low levels of live-virus nAb. This article is highlighted in the In This Issue feature, p. 101.


Asunto(s)
COVID-19 , Mieloma Múltiple , Humanos , SARS-CoV-2 , Infección Irruptiva , COVID-19/prevención & control , Linfocitos T CD8-positivos , Vacunas de ARNm , Anticuerpos Neutralizantes
6.
J Virol ; 96(17): e0058222, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35976000

RESUMEN

Emerging variants, especially the recent Omicron variant, and gaps in vaccine coverage threaten mRNA vaccine mediated protection against SARS-CoV-2. While children have been relatively spared by the ongoing pandemic, increasing case numbers and hospitalizations are now evident among children. Thus, it is essential to better understand the magnitude and breadth of vaccine-induced immunity in children against circulating viral variant of concerns (VOCs). Here, we compared the magnitude and breadth of humoral immune responses in adolescents and adults 1 month after the two-dose Pfizer (BNT162b2) vaccination. We found that adolescents (aged 11 to 16) demonstrated more robust binding antibody and neutralization responses against the wild-type SARS-CoV-2 virus spike protein contained in the vaccine compared to adults (aged 27 to 55). The quality of the antibody responses against VOCs in adolescents were very similar to adults, with modest changes in binding and neutralization of Beta, Gamma, and Delta variants. In comparison, a significant reduction of binding titers and a striking lack of neutralization was observed against the newly emerging Omicron variant for both adolescents and adults. Overall, our data show that a two-dose BNT162b2 vaccine series may be insufficient to protect against the Omicron variant. IMPORTANCE While plasma binding and neutralizing antibody responses have been reported for cohorts of infected and vaccinated adults, much less is known about the vaccine-induced antibody responses to variants including Omicron in children. This illustrates the need to characterize vaccine efficacy in key vulnerable populations. A third (booster) dose of BNTb162b was approved for children 12 to 15 years of age by the Food and Drug Administration (FDA) on January 1, 2022, and pediatric clinical trials are under way to evaluate the safety, immunogenicity, and effectiveness of a third dose in younger children. Similarly, variant-specific booster doses and pan-coronavirus vaccines are areas of active research. Our data show adolescents mounted stronger humoral immune responses after vaccination than adults. It also highlights the need for future studies of antibody durability in adolescents and children as well as the need for future studies of booster vaccination and their efficacy against the Omicron variant.


Asunto(s)
Anticuerpos Antivirales , Formación de Anticuerpos , Vacuna BNT162 , COVID-19 , SARS-CoV-2 , Adolescente , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacuna BNT162/administración & dosificación , Vacuna BNT162/inmunología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Niño , Humanos , Inmunización Secundaria , SARS-CoV-2/clasificación , SARS-CoV-2/inmunología
7.
J Clin Oncol ; 40(33): 3808-3816, 2022 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-35759727

RESUMEN

PURPOSE: To examine COVID-19 mRNA vaccine-induced binding and neutralizing antibody responses in patients with non-small-cell lung cancer (NSCLC) to SARS-CoV-2 614D (wild type [WT]) strain and variants of concern after the primary 2-dose and booster vaccination. METHODS: Eighty-two patients with NSCLC and 53 healthy volunteers who received SARS-CoV-2 mRNA vaccines were included in the study. Blood was collected longitudinally, and SARS-CoV-2-specific binding and neutralizing antibody responses were evaluated by Meso Scale Discovery assay and live virus Focus Reduction Neutralization Assay, respectively. RESULTS: A majority of patients with NSCLC generated binding and neutralizing antibody titers comparable with the healthy vaccinees after mRNA vaccination, but a subset of patients with NSCLC (25%) made poor responses, resulting in overall lower (six- to seven-fold) titers compared with the healthy cohort (P = < .0001). Although patients age > 70 years had lower immunoglobulin G titers (P = < .01), patients receiving programmed death-1 monotherapy, chemotherapy, or a combination of both did not have a significant impact on the antibody response. Neutralizing antibody titers to the B.1.617.2 (Delta), B.1.351 (Beta), and in particular, B.1.1.529 (Omicron) variants were significantly lower (P = < .0001) compared with the 614D (WT) strain. Booster vaccination led to a significant increase (P = .0001) in the binding and neutralizing antibody titers to the WT and Omicron variant. However, 2-4 months after the booster, we observed a five- to seven-fold decrease in neutralizing titers to WT and Omicron viruses. CONCLUSION: A subset of patients with NSCLC responded poorly to the SARS-CoV-2 mRNA vaccination and had low neutralizing antibodies to the B.1.1.529 Omicron variant. Booster vaccination increased binding and neutralizing antibody titers to Omicron, but antibody titers declined after 3 months. These data highlight the concern for patients with cancer given the rapid spread of SARS-CoV-2 Omicron variant.


Asunto(s)
COVID-19 , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Anciano , Vacunas contra la COVID-19 , Formación de Anticuerpos , SARS-CoV-2 , Carcinoma de Pulmón de Células no Pequeñas/terapia , Neoplasias Pulmonares/terapia , COVID-19/prevención & control , Anticuerpos Antivirales , Inmunización , Vacunación , Anticuerpos Neutralizantes , ARN Mensajero , Vacunas de ARNm
9.
Cell Rep Med ; 3(4): 100603, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35480625

RESUMEN

The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic highlights the importance of determining the breadth and durability of humoral immunity to SARS-CoV-2 mRNA vaccination. Herein, we characterize the humoral response in 27 naive and 40 recovered vaccinees. SARS-CoV-2-specific antibody and memory B cell (MBC) responses are durable up to 6 months, although antibody half-lives are shorter for naive recipients. The magnitude of the humoral responses to vaccination strongly correlates with responses to initial SARS-CoV-2 infection. Neutralization titers are lower against SARS-CoV-2 variants in both recovered and naive vaccinees, with titers more reduced in naive recipients. While the receptor-binding domain (RBD) is the main neutralizing target of circulating antibodies, Moderna-vaccinated naives show a lesser reliance on RBDs, with >25% neutralization remaining after depletion of RBD-binding antibodies. Overall, we observe that vaccination induces higher peak titers and improves durability in recovered compared with naive vaccinees. These findings have broad implications for current vaccine strategies deployed against the SARS-CoV-2 pandemic.


Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2/genética , Vacunación
10.
Cell Rep Med ; 3(2): 100529, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35233550

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant emerged in November 2021 and consists of several mutations within the spike. We use serum from mRNA-vaccinated individuals to measure neutralization activity against omicron in a live-virus assay. At 2-4 weeks after a primary series of vaccinations, we observe a 30-fold reduction in neutralizing activity against omicron. Six months after the initial two-vaccine doses, sera from naive vaccinated subjects show no neutralizing activity against omicron. In contrast, COVID-19-recovered individuals 6 months after receiving the primary series of vaccinations show a 22-fold reduction, with the majority of the subjects retaining neutralizing antibody responses. In naive individuals following a booster shot (third dose), we observe a 14-fold reduction in neutralizing activity against omicron, and over 90% of subjects show neutralizing activity. These findings show that a third dose is required to provide robust neutralizing antibody responses against the omicron variant.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacuna BNT162/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Vacunación/métodos , Adulto , Anciano , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/inmunología , COVID-19/virología , Chlorocebus aethiops , Estudios de Cohortes , Femenino , Humanos , Inmunización Secundaria/métodos , Masculino , Persona de Mediana Edad , Mutación , Pruebas de Neutralización , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero , Adulto Joven
12.
medRxiv ; 2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35018383

RESUMEN

PURPOSE: We investigated SARS-CoV-2 mRNA vaccine-induced binding and live-virus neutralizing antibody response in NSCLC patients to the SARS-CoV-2 wild type strain and the emerging Delta and Omicron variants. METHODS: 82 NSCLC patients and 53 healthy adult volunteers who received SARS-CoV-2 mRNA vaccines were included in the study. Blood was collected longitudinally, and SARS-CoV-2-specific binding and live-virus neutralization response to 614D (WT), B.1.617.2 (Delta), B.1.351 (Beta) and B.1.1.529 (Omicron) variants were evaluated by Meso Scale Discovery (MSD) assay and Focus Reduction Neutralization Assay (FRNT) respectively. We determined the longevity and persistence of vaccine-induced antibody response in NSCLC patients. The effect of vaccine-type, age, gender, race and cancer therapy on the antibody response was evaluated. RESULTS: Binding antibody titer to the mRNA vaccines were lower in the NSCLC patients compared to the healthy volunteers (P=<0.0001). More importantly, NSCLC patients had reduced live-virus neutralizing activity compared to the healthy vaccinees (P=<0.0001). Spike and RBD-specific binding IgG titers peaked after a week following the second vaccine dose and declined after six months (P=<0.001). While patients >70 years had lower IgG titers (P=<0.01), patients receiving either PD-1 monotherapy, chemotherapy or a combination of both did not have a significant impact on the antibody response. Binding antibody titers to the Delta and Beta variants were lower compared to the WT strain (P=<0.0001). Importantly, we observed significantly lower FRNT50 titers to Delta (6-fold), and Omicron (79-fold) variants (P=<0.0001) in NSCLC patients. CONCLUSIONS: Binding and live-virus neutralizing antibody titers to SARS-CoV-2 mRNA vaccines in NSCLC patients were lower than the healthy vaccinees, with significantly lower live-virus neutralization of B.1.617.2 (Delta), and more importantly, the B.1.1.529 (Omicron) variant compared to the wild-type strain. These data highlight the concern for cancer patients given the rapid spread of SARS-CoV-2 Omicron variant.

13.
Cleft Palate Craniofac J ; 59(6): 701-707, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34121473

RESUMEN

OBJECTIVE: This study assessed the feasibility of unpaid social media advertising to recruit participants affected with an orofacial cleft (OFC) for a genetic study. DESIGN: This is a retrospective analysis of recruitment based on enrollment and participation in a genetic study. Participants completed a series of enrollment surveys, provided saliva samples, and completed postparticipation feedback surveys. PARTICIPANTS: Participants were eligible if they or a minor in their care were affected by an OFC, the affected participant was not adopted, and the mother of the affected individual had not taken antiseizure medication during pregnancy. MAIN OUTCOME MEASURES: Success of recruitment was evaluated from the number of enrolled participants and sample return rate. RESULTS: In the first 12 months of recruitment, 313 individuals completed initial screening surveys; of these, 306 participants were eligible. A total of 263 individuals completed all online surveys and were sent DNA sample kits. One hundred sixty-two subject DNA samples were returned within 12 months of sending, for a return rate of 62%. Approximately two-thirds (66.3%) of all returned samples were sent back within the first 6 weeks after receiving DNA kits. CONCLUSIONS: Unpaid social media advertising enabled the recruitment of a large cohort of participants in a short time (12 months). The resulting study population was limited in racial and ethnic diversity, suggesting that other recruitment strategies will be needed for studies seeking specific demographic or socioeconomic groups. Nonetheless, social media recruitment was efficient and effective for recruiting participants for a genetic study in comparison to traditional clinic-based modes of recruitment.


Asunto(s)
Labio Leporino , Medios de Comunicación Sociales , Labio Leporino/genética , ADN , Estudios de Factibilidad , Investigación Genética , Humanos , Estudios Retrospectivos
14.
medRxiv ; 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34931200

RESUMEN

The Omicron variant of SARS-CoV-2 is raising concerns because of its increased transmissibility and potential for reduced susceptibility to antibody neutralization. To assess the potential risk of this variant to existing vaccines, serum samples from mRNA-1273 vaccine recipients were tested for neutralizing activity against Omicron and compared to neutralization titers against D614G and Beta in live virus and pseudovirus assays. Omicron was 41-84-fold less sensitive to neutralization than D614G and 5.3-7.4-fold less sensitive than Beta when assayed with serum samples obtained 4 weeks after 2 standard inoculations with 100 µg mRNA-1273. A 50 µg boost increased Omicron neutralization titers and may substantially reduce the risk of symptomatic vaccine breakthrough infections.

15.
bioRxiv ; 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34981056

RESUMEN

The BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines generate potent neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the global emergence of SARS-CoV-2 variants with mutations in the spike protein, the principal antigenic target of these vaccines, has raised concerns over the neutralizing activity of vaccine-induced antibody responses. The Omicron variant, which emerged in November 2021, consists of over 30 mutations within the spike protein. Here, we used an authentic live virus neutralization assay to examine the neutralizing activity of the SARS-CoV-2 Omicron variant against mRNA vaccine-induced antibody responses. Following the 2nd dose, we observed a 30-fold reduction in neutralizing activity against the omicron variant. Through six months after the 2nd dose, none of the sera from naïve vaccinated subjects showed neutralizing activity against the Omicron variant. In contrast, recovered vaccinated individuals showed a 22-fold reduction with more than half of the subjects retaining neutralizing antibody responses. Following a booster shot (3rd dose), we observed a 14-fold reduction in neutralizing activity against the omicron variant and over 90% of boosted subjects showed neutralizing activity against the omicron variant. These findings show that a 3rd dose is required to provide robust neutralizing antibody responses against the Omicron variant.

16.
Am J Pathol ; 187(2): 332-338, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27939134

RESUMEN

The extent to which vascular calcification is reversible and the possible mechanisms are unclear. To address this, calcified aortas from uremic mice were transplanted orthotopically into normal mice, and the calcium content, histology, and minerals of the allografts were compared with the nontransplanted donor aorta. Calcium content decreased immediately after transplantation but remained constant thereafter, with 68% ± 12% remaining after 34 weeks. X-ray diffraction showed the presence of apatite in both donor aortas and allografts. Osteoclasts were absent in the allografts and there was no expression of the macrophage marker CD11b, the osteoclast marker tartrate-resistant acid phosphatase, or carbonic anhydrase II. The initial loss of calcium was less in heavily calcified aortas and was associated with an increase in the Ca/P ratio from 1.49 to 1.63, consistent with a loss of nonapatitic calcium. The results indicate that vascular calcification persists after reversal of uremia, because of a lack of active resorption of apatite. This failure to resorb established calcifications may contribute to the severity of vascular calcification and suggests that therapy should be aimed at prevention.


Asunto(s)
Uremia/complicaciones , Calcificación Vascular/etiología , Calcificación Vascular/patología , Aloinjertos , Animales , Aorta/patología , Aorta/trasplante , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...